Special functions related to Dedekind-type DC-sums and their applications

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Functions Related to Dedekind Type Dc-sums and Their Applications

In this paper we construct trigonometric functions of the sum Tp(h, k), which is called Dedekind type DC-(Dahee and Changhee) sums. We establish analytic properties of this sum. We find trigonometric representations of this sum. We prove reciprocity theorem of this sums. Furthermore, we obtain relations between the Clausen functions, Polylogarithm function, Hurwitz zeta function, generalized La...

متن کامل

Note on Dedekind Type Dc Sums

In this paper we study the Euler polynomials and functions and derive some interesting formulae related to the Euler polynomials and functions. From those formulae we consider Dedekind type DC(Daehee-Changhee)sums and prove reciprocity laws related to DC sums.

متن کامل

Generating functions and generalized Dedekind sums

We study sums of the form ∑ ζ R(ζ), where R is a rational function and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call these generalized Dedekind sums, since the most well-known sums of this form are Dedekind sums. We discuss three methods for evaluating such sums: The method of factorization applies if we have an explicit formula for ∏ ζ(1− xR(ζ)). Multisection ca...

متن کامل

Evaluation of Dedekind Sums, Eisenstein Cocycles, and Special Values of L-functions

We define certain higher-dimensional Dedekind sums that generalize the classical Dedekind-Rademacher sums, and show how to compute them effectively using a generalization of the continued-fraction algorithm. We present two applications. First, we show how to express special values of partial zeta functions associated to totally real number fields in terms of these sums via the Eisenstein cocycl...

متن کامل

p-ADIC DEDEKIND AND HARDY-BERNDT TYPE SUMS RELATED TO VOLKENBORN INTEGRAL ON Zp

where ((x)) = x − [x]G − 1 2 , if x / ∈ Z, ((x)) = 0, x ∈ Z, where [x]G is the largest integer ≤ x cf. ([1], [5], [9], [11], [12], [13]). In this paper, Zp, Qp, Cp, C and Z, respectively, denote the ring of p-adic integers, the field of p-adic rational numbers, the p-adic completion of the algebraic closure of Qp normalized by |p|p = p −1, and the complex field and integer numbers. Let q be an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Russian Journal of Mathematical Physics

سال: 2010

ISSN: 1061-9208,1555-6638

DOI: 10.1134/s1061920810040114